Quasi-solutions for generalized second order differential equations with deviating arguments

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Second-order Differential Equations with Deviating Arguments

where f ∈ C(J ×R×R,R) and α∈ C(J , J) (e.g., αmay be defined by α(t)=√t, T ≥ 1 or α(t)= 0.7t, t ∈ J). Moreover, r and γ are fixed real numbers. Differential equations with deviated arguments arise in a variety of areas of biological, physical, and engineering applications, see, for example, [9, Chapter 2]. The monotone iterative method is useful to obtain approximate solutions of nonlinear diff...

متن کامل

Oscillation Criteria for a Certain Second-order Nonlinear Differential Equations with Deviating Arguments

In this paper, by using the generalized Riccati technique and the integral averaging technique, some new oscillation criteria for certain second order retarded differential equation of the form

متن کامل

Oscillation of Second-order Quasi-linear Neutral Functional Dynamic Equations with Distributed Deviating Arguments

In this paper, some sufficient conditions for the oscillation of second-order nonlinear neutral functional dynamic equation ( r(t) ( [x(t) + p(t)x[τ(t)]] )γ)∆ + ∫ b a q(t, ξ)x [g(t, ξ)]∆ξ = 0, t ∈ T are established. An example is given to illustrate an application of our results.

متن کامل

Periodic Solutions for a Second-order Neutral Differential Equation with Variable Parameter and Multiple Deviating Arguments

By employing the continuation theorem of coincidence degree theory developed by Mawhin, we obtain periodic solution for a class of neutral differential equation with variable parameter and multiple deviating arguments.

متن کامل

Oscillatory behavior of second order nonlinear neutral differential equations with distributed deviating arguments

(H) I := [t,∞), r,p ∈ C(I,R), r(t) > , and p(t)≥ ; (H) q ∈ C(I× [a,b], [,∞)) and q(t, ξ ) is not eventually zero on any [tμ,∞)× [a,b], tμ ∈ I; (H) g ∈ C(I× [a,b], [,∞)), lim inft→∞ g(t, ξ ) =∞, and g(t,a)≤ g(t, ξ ) for ξ ∈ [a,b]; (H) τ ∈ C(I,R), τ ′(t) > , limt→∞ τ (t) =∞, and g(τ (t), ξ ) = τ [g(t, ξ )]; (H) σ ∈ C([a,b],R) is nondecreasing and the integral of (.) is taken in the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Applied Mathematics

سال: 2008

ISSN: 0377-0427

DOI: 10.1016/j.cam.2007.05.028